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ABSTRACT

Three-dimensional turbulent jets in crossflow at low to medium jet-to-crossflow

velocity ratios are computed with a finite-volume numerical procedure which utilizes

a second-moment closure model to approximate the Reynolds stresses. A multigrid

method is used to accelerate the convergence rate of the procedure. Comparison of

the computations to measured data show good qualitative agreement. All trends are

correctly predicted, though there is some uncertainty on the height of penetration of the

jet. The evolution of the vorticity field is used to explore the jet-crossflow interaction.

INTRODUCTION

Three-dimensional turbulent jets in crossflow have important engineering applications in

both confined and unconfined environments. Examples of jets issuing into confined crossflow

include internal cooling of turbine blades, dilution air jets in combustion chambers, jets

from V/STOL aircraft in transition flight, etc. The examples of turbulent jets issuing into

unconfined (semi-infinite) crossflow include discharges from cooling towers or chimney stacks

into the atmosphere, or of sewerage or waste heat into water bodies, film-cooling of turbine

blades, etc. Several experimental investigations give insight into the various characteristics

of the jet-crossflow interaction. The earlier studies typified by Kamotani and Greber [1]

measured mostly global properties such as jet trajectory and spreading rates for a wide

range of conditions. These results showed that the trajectory based on the temperature

field often differed from the trajectory based on the velocity field. The same applies to the

spread rates. There is thus some ambiguity as to what constitutes jet fluid as opposed to

the jet boundaries and extent of mixing. Flow visualization studies by Foss[2] present an

insight into the differences in flow regimes between lower and higher jet-to-crossflow velocity

ratios, R. For the same configurations, measurements of the mean-flow and several higher

order turbulent statistics are presented by Andreopoulos and Rodi[3] and Andreopoulos[4].

These constitute the most detailed set of measured data of jets-in-crossflow existing in the

open literature. However, in regions with reverse flow, or high turbulence levels the accuracy

of the data would not be very high. There is therefore still need for "accurate _: numerical
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computations in understanding the flow phenomena. Sykes et al [5] used a numerical method

to explore the vorticity dynamics of jets in crossflow at high R. Their computations showed

good qualitative agreement with the measured data [3] at R=2, except for turbulent kinetic

energy levels, which were grossly overpredicted in the wake of the jet.

The present paper examines flow features at moderate R, using a finite-volume based

multigrid method to compute the mean-flow and a second-moment closure model for the

Reynolds stresses.

MATHEMATICAL MODEL

Mean-Flow

The time-averaged, three-dimensional, steady state equations governing the turbulent flow

and heat/concentration transfer may be expressed in cartesian tensor notation as: Continuity

(9 (pU_) 0 (1)
COy_ =

Momentum

co j + ] j (2)

Temperature/Concentration

,CO [- p_v + A( Od_'_j(pUj¢_) : S¢-4- CO_ Offj) ] (3)

with i-1,2,3 and j-1,2,3 representing properties in the lateral, vertical and longitudinal

directions, respectively, yJ (- yl, y2, y3) represents the cartesian coordinates; Ui the cartesian

velocity components; P the pressure and 4) the normalized temperature or concentration, f,

is the density, # is the molecular viscosity and A is the thermal or species diffusivity. The

equations are expanded by using Einstein's summation rule for repeated indices. -puiujand

-pui_are respectively, the Reynolds stresses and heat/concentration fluxes which must be

determined by a turbulence model before the system of equations can be closed.

Turbulence Model

The transport equations for the Reynolds stresses may be expressed as:

oyJco(pujw i) - p(d,j + + - ¢,j) (4)

where the terms on the right hand side are respectively, diffusive transport, shear production,

pressure-strain redistribution, and viscous dissipation. Of these, only the shear production

can be represented exactly. All other terms must be modeled in order to close the system
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of equations. Dissipation is modeledwith the assumptionof local isotropy of small scalesto
yield eij =-2/3eSij, where e is the rate of dissipation of turbulent kinetic energy, k(= _uiui).a----

Following Launder, Reece and Rodi [6], hereafter denoted LRR, we utilize a gradient diffusive

transport model and a quasi-isotropic model for the pressure-strain. The resulting modeled

equations may be written as:

-p{(1 -a)[u_UlOy_y J + ujut_Zy, ] -ptuiu_-oy _ + uju,_ ]

+ 3a,j(_ , _, ov_ out av, _2 *P)uku*ofiyk +7k(-oj + 0y3"

-.l_-(-u_ - + (5)

with the empirical coefficients a, fl, 7, cl, and co given by:

a = 0.7636 - 0.06 f; fl - 0.1091+0.06f;7 - 0.182;

c_ = 1.5- 0.50f; c, = 0.22

Wall-proximity effects are approximated with the function f which takes a v-,due of unity near

walls decreasing asymptotically to zero in a completely free stream (see Demuren and Rodi

[7]). The distribution of e is obtained from the solution to the modeled transport equation:

0 (pvj_) 0 k__ & , e d
ayJ (6)

Rather than solve the corresponding equations for the turbulent heat/concentration fluxes

ui_, we employ eddy-diffusivity relations as:

__ OA (7)
--pu_ = a¢ Oy'

/his the eddy viscosity given by :

k 2

m = c.p-_- (8)

The empirical coefficients in Eq. (6)-(8) take values:

c, = 0.15, % -- 0.09, c_1 = 1.44, c,_ = 1.92, at = 0.9



Boundary Conditions

Four types of boundary conditions are encountered, namely: inlet, outlet, symmetry and

walls. Inlet conditions are specified from experimental data. The outlet is an outflow

boundary requiring no formal specification of conditions. Along symmetry planes the nor-

real gradients of all variables are set to zero, and the normal velocity component is also

zero. The walls are special in that we do not integrate all the ;_ay down, rather we use

the wall-function method [7] to prescribe the values of the dependent variables at the nodes

immediately adjacent to the walls. The nodes are located such that the flow is in the fully

turbulent region where the logarithmic law of the wall inay be expected to apply. However,

in the complex flow field under investigation here, this is unlikely to be the case everywhere.

An improved wall-matching technique, such as that proposed by Degani and Walker[8 ] would

probably be more appropriate. The flow which comes out of the jet hole is in general not

uniform but is distorted to an extent which depends on R. At high R, there is very little

distortion so uniform exit velocity may not be in much error. However, at low R (e.g. 0.5),

Andreopoulos and Rodi [3] found that there was hardly any outflow through the front half

near the stagnation point, and the vertical velocity near the lee side was measured to be

more than 150 percent of the mean. The best way to treat this case is to solve for the flow

within the discharge pipe as well, Demuren and Rodi[9] have found that the imposition of

a constant total pressure at the discharge plane produced nearly the correct distribution of

the vertical velocity. This approach is adopted here.

The boundary conditions for the turbulence quantities are prescribed along near-wall

nodes based on the assumption of loc'al equilibrium. Hence, we use the equation:

Pi_ + 7rij -_# = 0 (9)

which is effectively an algebraic stress model. Further, the assumption of the logarithmic
law of the wall enables the values of k and e at the near-wall nodes to be related to the

friction velocity U, as:

(u,) (u,)
-- x/,c; ; e,, - _y_, (10)

where a is the yon Karman constant with value 0.42, and yw is the normal distance from

the wall to the respective node.

SOLUTION PROCEDURE

Equations (1)-(8) form a closed set which should be solved simultaneously to yield distribu-

tions of the mean-flow and turbulence quantities. The system of equations are discretized by

a semi-implicit, fiifite-volume procedure based on the SIMPLE algorithm of Patankar and

Spalding[10]. The original algorithm, as well as proposed improvements [11,121 have poor

convergence properties, especially for three-dimensional recirculating flows. This deficiency

is removed in the present work by a multigrid technique which uses SIMPLEC [111 merely

as a relaxation (smoothing) scheme. Shaw et al [13] have shown that the SIMPLE algorithm
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(or extensions thereof) has good smoothing properties. Details of the multigrid procedure

are provided below. The semi-implicit method involves a linearization which decouples the

system of equations because the full Jacobian matrices are not evaluated. Although this

practice produces a scalar system of matrix equations which are computationally cheap to

solve, the system may become stiff if large source terms have to be treated explicitly. Such

a situation would arise if the Reynolds stresses in Eq. (2) have large gradients, as one might

expect in the flows under consideration here. the consequence of that would be massive

underrelaxation required to ensure stability with the attendant slow convergence rate. The

stiffness can be reduced considerably by splitting the Reynolds stress uiuj into two parts:

The first part is treated explicitly. The second part is added to the molecular diffusion

term and treated implicitly. The modified momentum equation has the form:

0 (pU_Ui) = 0 p
Oy_ Oy'

+_o. + (# + .,) (°v, + l (12)

The resulting system of equations is now very stable and can be solved with standard iteration

methods.

Multigrid Procedure

In the present work the FAS-FMG (full approximation storage-full multigrid) algorithm

originally developed by Brandt [14] is employed to solve the hydrodynamic equations. The

present implementation derives from previous works by Demuren [15] and Vanka [16]. There

are however significant differences. First, the present method uses a regular grid system with

no staggering of the velocity nodes relative to the pressure nodes. The expected odd-even

decoupling problem is overcome by adding a fourth-order artificial dissipation term to the

pressure gradient. It can be shown that, with a coefficient of unity, this practice is equivalent

to the so-called "momentum interpolation" method of Peric [17]. However, there is now the

flexibility to vary the coefficient all the way down to zero, if necessary. The second difference

is that the system of equations is now solved in a sequential manner as opposed to the

coupled approach proposed by Vanka. Numerical experiments showed no advantage in using

the latter in a multigrid procedure, and it can be shown mathematically that it is less stable

in a single-grid procedure. Further, the decoupled procedure is more easily vectorized.

The basic steps of the relaxation process are:

1. Solve the U1 momentum equation using a guessed pressure field.

2. Then the U2 momentum equation.



3. Then the U3 momentum equation.

4. Compute the velocities on the faces of the control volume, each by linear interpolation

plus a fourth-order artificial dissipation term.

5. Then compute the mass source error in each control volume.

6. Solve a pressure-correction equation to eliminate the mass source errors, and then

correct the pressures and corresponding velocity components.

7. If on the finest grid level, solve the equations for k, c, and uiuj, as the case may be.

8. Then solve the temperature equation.

These steps are repeated until convergence on the current finest grid. ]'he multigrid

process starts with the prolongation of converged solution on a coarse grid to the next finer

grid. A fixed V-cycle full multigrid algorithm is then utilized with 10 iterations on the

coarsest grid and 3 on intermediate grids and one iteration oi1 the finest grid. Residuals

of the momentum equations, as well as the cell-face mass flux equations are restricted onto

coarser grids for smoothing. Since we employ the full approximation storage variant, which

is applicable to a non-linear system [14], it is also necessary to restrict the velocities and

the temperature. Restriction from fine to coarse grid is by 8-point averages. The difference

between the restricted values and the smoothened solution on the coarse grid is prolongated

onto the fine grid using trilinear interpolation. An AD1 routine is employed to solve the final

set of algebraic equations for all variables at all grid levels. The underlying algorithm is the

tri-diagonal matrix algorithm (TDMA) which is known to be recursive, and would thus not

normally be vectorizable. However, by a change in the data structure we can make all the

internal loops of the ADI solver vectorizable on the Cray computers. Although we cannot

remove the recursivity of the algorithm, the change in data structure ensures that all floating

point operations are in vector form. Typical saving in total CPU time resulting from this

change alone is of the order of 50% for an average vector length of 35.

The equations for turbulent quantities uiuj and _ are solved only on the current finest

grid. Corresponding operators on coarser grids are calculated using restricted values for

these quantities. However, the solution process on any fine grid is started with variable

values prolongated from the converged solution on the immediate coarser grid.

In order to investigate the characteristics of jets in crossflow at low to medium R, we

compute two cases with R = 0.5 and 2.0, respectively. These correspond to some of the

cases for which Andreopoulos and Rodi [3] and Andreopoulos [4] present measured data of

IIlean-flow a_,d turbulent quantities.

RESULTS AND DISCUSSION

In the computations a non-uniform grid is utilized, with most points concentrated in the

regions near the jet discharge and immediately downstream. The computational domain ex-

tends for 6 diameters from the symmetry axis to a free boundary, in the lateral direction, 11



diameters from the wall to a free boundary, in the vertical direction, and 22 diameters from

the crossflow inlet to exit planes, in the streamwise direction. The 3-level multigrid scheme

has (11,18,23) points on the coarsest level and (38,66,86) points on the finest level, in the

yl, y_, y3 directions, respectively. Figure 1 gives a perspective view of the finest grid distribu-

tion. Typically, 45 fine grid iterations are required for convergence to a normalized residual

norm of 5x10 -4. With the overheads of the smoothing, restrictions and prolongations, this

translates to about 120 total work units or 25 minutes of CPU time on the Cray 2 computer.

It turns out that the time is evenly divided between the mean-fow and the turbulence field

computations, which suggests that this is a good candidate for a dual-processor machine.

The inlet plane for the crossflow is located 4D upstream ot the jet hole, and the outlet plane

18D. The other two boundaries are located far enough away as to have no influence oil the

jet.

Figure 2 compares the computed streamwise velocity contours, in the symmetry plane,

for the two cases, and the normalized temperature contours are compared in Fig.3. Although

both jets have a reverse flow region on their lee side, their regimes are quite different. The

jet at low R has a very small core, beyond which it is quickly bent over by the crossflow

and blends with the wall boundary layer. At higher R the jet has a core which is roughly

2D long, considerably shorter than the 4-6 D observed in free jets, and is bent over much

more gradually. An characteristic feature of jet in crossflow is that the temperature and

velocity contours are noncoincident. The core of the jet, indicated by the temperature field,

is actually a region with high shear, and the peak streamwise velocity occurs not in the

jet but in the crossflow, caused by the acceleration of the latter around the jet. Figure 4

compares the computations of the velocity field at R = 0.5 with measured data [3]. Turbulent

quantities are compared in Fig. 5. The vertical velocity profiles along the symmetry plane

show good agreement. It is notable that the flow reversal from upwards to downwards which

occurs somewhere between 1D and 4D is predicted. This is associated with the downwash

effect of the wake. Streamwise velocity profiles show good agreement between predicted and

measured values. The lateral velocity in a longitudinal plane passing through the edge of

the jet is also well predicted. Comparison of turbulent quantities in Fig. 5 indicates that the

jet may have penetrated deeper into the crossflow than computed, which is surprising if one

considers the correct prediction of the vertical velocity magnitudes. A plausible explanation

is that the measurements may represent the averaged effect of large scale coherent structures

which were observed near the edge of the jet but which the present turbulence model does not

explicitly account for. In contrast, the comparisons at high R, show in Fig. 6 that we predict

a higher penetration of the jet. The vertic',d velocity field is considerably overpredicted.

Apart from this, the correct trends and magnitudes are predicted. Figure 7 shows similar

comparisons for the Reynolds stresses. At 4D, the predicted turbulent kinetic energy levels

are much higher than the measured values. The predictions indicate that there is significant

dissipation downstream, whereas the experiments show tittle change in magnitudes so that

by 6D and 10D predicted and measured levels are sinfilar. That change is attributable

to convection and diffusion. Sykes et al [5] also overpredicted the turbulence levels. It is

believed that this is a result of the inadequacy of the dissipation equation in the region with



very high shear rates near the jet exit.

In Figs. 8-10 we examine the evolution of tile vorticity field in cross-stream planes, (0D,

2D and 4D) as the flow progresses downstream. Figure 8 compares, at low and medium R,

the lateral vorticity components. All along the wall there is a strong boundary layer vorticity

which has a positive sense. At low R, a horse-shoe vortex is formed around the jet which

then binds the jet fluid to the boundary layer. The picture is qui.te different at higher R.

First, there is the formation of strong negative vorticity in the stagnation region along the

front of the jet, which is convected above the jet by 2D and is almost completely diffused

and dissipated by 4D. A horse-shoe vortex forms below it, which is quite strong at 2D, but

considerably diminishes in strength by 4D. Between the horse-shoe vortex and the boundary-

layer vortex is a weaker vortex with opposite sense in the wake of the jet. Figure 9 shows

the vertical vorticity component. In both cases with low- and medium-R we have a similar

pattern. There is a strong negative vorticity which emanates near the lip of the jet exit hole

due to the expansion of the jet as it emerges. It is subsequently convected and dispersed

by the jet-crossflow interaction. This is the dominant feature, though there is a vorticity

pattern with the opposite sense near the symmetry plane. This pattern is also seen in Fig.

10 which shows the streamwise vorticity components. It is associated with the downwash

effect of the wake and leads to a depression of the velocity and temperature contours near

the symmetry axis. There is a strong negative vorticity produced by the acceleration of the

crossflow as it bends around the jet. Some of this is then entrained into the jet through

the wake region. The rest is wrapped around the jet and is dispersed further downstream.

At low R, there is a much smaller wake region, so this process takes place within a short
distance.

CONCLUDING REMARKS

The present mathematical procedure predicts correctly the basic features of turbulent jets

in crossflow at low to medium jet to crossflow velocity ratio. There is some quantitative
between modeldiscrepancy :: = results and experimental data which iS presumed to be partly

due to model deficiency and inadequacies in the measuremeut techniques. Further, boundary

conditions at the jet discharge plane which are difficult to specify because of the crossflow

interaction have significant effects on the computed flow field. They are rarely ever measured

in sufficient detail. The differences in the jet-crossflow interaction at low to medium R are

examined through the evolution of the vorticity field.
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